
  

  

Abstract— While standards for robot manipulator safety and 
test methods for performance are in development, the same 
considerations have not been applied to the collaborative 
elements between human and robot agents in manufacturing 
environments. To this end, we propose a testbed, specifying 
artifacts, apparatus, procedures, and metrics, for evaluating 
the performance of collaborative human-robot interaction. The 
testbed will be used to measure the capabilities of a 
collaborative robotic manipulator system (arm, end effector, 
and sensing) alongside a human, both for performance of task 
instruction from human to robot, and the resulting task 
execution performance. Considerations for development of the 
testbed and test method concepts are discussed. 

I. INTRODUCTION 
Robots working alongside humans in manufacturing 

environments (i.e., sharing work cells) are becoming more 
prevalent. Evaluations of a collaborative robotics system 
(CRS) in this regard typically are focused on task 
performance throughput and safety [7]. Human-robot 
interaction (HRI) research has some standard procedures with 
respect to measurement techniques [16], but very little in 
terms of standardized experiment set-ups. A series of 
workshops are dedicated to this subject [5]. We propose a 
testbed of artifacts, apparatus, procedures, and metrics to be 
used for standardized and comparative evaluation of human-
robot collaboration (HRC), specifically with robotic 
manipulators. In this paper, we discuss considerations for 
development and concepts for test methods. 

II. RELATED WORK 
 Test methods for industrial manipulator performance 

have been developed which evaluate elemental grasping [6] 
and functional assembly tasks [13]. Those test methods use 
simple artifacts to measure capabilities such as grasp strength 
and fastening, among others. There are also common 
benchmarks that are used throughout the robotic 
manipulation community such as the YCB Object and Model 
Set [4] and the Dex-Net 2.0 [11] performance dataset. The 
proposed testbed will leverage these existing efforts and will 
provide artifacts, apparatus, procedures, and metrics. This is 
similar to the test methods developed through ASTM E54.09 
[1] and ASTM F45 [2], which abstract real world tasks that 
are used to measure robot capabilities. The standard test 
methods in those committees only specify measurement 
techniques; they do not specify performance thresholds. 
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III. SCOPE 
The collaborative HRI testbed will focus initially on 

manufacturing and industrial environments where robotic 
manipulators are used to perform tasks alongside a human 
that are either shared between both agents or dependent on 
one another’s participation. A CRS that can be used with the 
testbed will have a robotic manipulator with an end effector 
and sensors. It may also have knowledge representation of 
the human’s actions and/or task progression. Performance of 
task instruction from human to robot and the execution of the 
resulting task will be considered. Both processes are tied 
together, and will be evaluated as such. 

The testbed will comprise a series of test methods that 
will be designed for testing the performance of all HRC 
elements: the CRS (arm, end effector, sensing), the human, 
and the task. The test methods will be designed such that 
metrics can be derived for both task-based, holistic 
evaluation of the entire collaboration (e.g., task throughput, 
efficiency) and evaluation of the performance of individual 
elements in the context of the entire collaboration (e.g., the 
effect of the robustness of an object detection sensor on task 
execution, alleviated by human intervention).  

The development of the testbed will be guided by a 
characterization of CRS, the tasks they perform, and the 
conditions they perform in, to produce a taxonomy of 
common CRS elements. The taxonomy will drive the design 
of a set of malleable test artifacts, apparatus, procedures, and 
metrics that can be used to define various test methods, as 
previously done for obstacle avoidance test methods [14]. 
The test methods can be scaled and adjusted to fit varying 
configurations of CRS and task processes. The testbed will be 
fabricated using readily available materials such as aluminum 
tubing, wood, and 3D-printed models. The test artifacts will 
be designed such that they can be used to exercise challenges 
for task instruction and task execution.  

IV. DEVELOPMENT CONSIDERATIONS 
The characterization taxonomy will drive the 

development of the testbed with four main outputs: physical 
elements of the testbed in the form of artifacts and apparatus, 
the procedures to carry out experiments, and the metrics to 
evaluate performance in the testbed. Throughout this section, 
an example HRC scenario is provided to illustrate each 
output. The scenario involves a collaborative assemble, pick, 
and place task, where the human assembles an object, places 
it into the work area for the CRS to detect, and the CRS 
organizes it based on the object’s shape (see Figure 1). A 
scenario with reserved roles could also apply wherein the 
CRS assembles the object and the human organizes it. 
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A. Characterization Taxonomy 
The characterization taxonomy will be developed by 

conducting a literature review of relevant research papers and 
publications. The review will include papers that detail 
interaction design approaches for HRI/HRC (e.g., [9], [12]), 
surveys on the subject (e.g., [3], [10]), and existing 
taxonomies (e.g., HRI [15], robotic assembly [17]). From this 
literature review, we will extract the characteristics that are 
most relevant to CRS instruction and task execution. This 
includes characteristics for manipulator degrees of freedom 
(DOF), end effector type (e.g., gripper, tool), and sensor data 
types (e.g., 2D image, 3D point cloud). There will also be a 
breakdown of human roles and actions (e.g., adaptation to 
errors). For characterization of tasks to be performed, both 
generic (e.g., simultaneous or sequential actions) and specific 
elements (e.g., instruction type: kinesthetic teaching, learning 
by demonstration; end effector movements: pick and place, 
insert, slide) will be included. The qualities of individual 
components as well as the relationships and dependencies 
between them will also be covered. 

The taxonomy will only feature the characteristics that 
can affect HRC performance as derived from the literature 
review. The variance in these characteristics between 
different CRS provides a possible area for developing a test 
method. The structure of the taxonomy may also be used as 
the basis for a recording technique to capture the 
configuration of a CRS prior to experimentation.   

B. Artifacts 
The artifacts are representative objects that the human and 

CRS interacts with, either to grasp and move around, use 
with a tool to change the artifact’s state (e.g., sand or grind 
down), and/or are used in conjunction with another artifact 
(e.g., fastening two objects together). The configuration of 
the CRS being tested will influence how the artifacts are 
rendered with respect to color, shape, texture, dimensions, 
and mass. Depending on the use case, artifacts can be 
designed around a set of rules regarding how they are 
interacted with (e.g., must maintain orientation).  

Using the example HRC scenario in Figure 1, there are 
three artifacts (stage 1): a blue cylinder with a hole, an orange 
block with a hole, and a green peg that fits the holes. By 
placing the peg in either of the holes to assemble the artifacts 
together (stage 2), the human can create two unique 
assembled artifacts. The two artifacts are held together by 
gravity. The characteristics of the assembled artifact 
influence performance parameters: it cannot be grasped by 
the peg only (stage 3) because the cylinder or block will fall 
out, it cannot be turned over during transfer (stage 4) because 
the peg will fall out, and the two unique assembled artifacts 
must be organized appropriately (stage 5). All of these 
parameters can be conveyed from the human to the CRS 
during the task instruction phase. Possible avenues for 
evaluation include the instruction of these parameters and 
adherence to these parameters during task execution. 

C. Apparatus 
The environment that contains the CRS testbed will be 

comprised of apparatus that are representative of 
collaborative manufacturing settings. For our purposes, this 
largely refers to the geography of the testbed, such as the 
position of the human, robot, and task workspace in relation 
to each other. The task workspace includes the start, mid, and 
end states or locations of the artifacts that make up the steps 
to be taken to perform the task. The dimensions and 
configuration of the apparatus may restrict where certain 
interactions can take place. It can also obstruct approach 
angles for certain actions (e.g., picking an artifact off of a 
tabletop vs. out of a box).  

The notional apparatus in Figure 1 shows a start location 
that contains artifacts (stage 1), a mid location for the 
artifacts to be interacted with by both agents (stage 3), and 
the end location for the artifacts (stage 5). The end location 
has multiple possible zones that can be used for measuring 
performance (i.e., if the CRS places the wrong assembled 
artifact on the wrong shelf). It also has vertical obstructions 
that restricts how the CRS is able to interact with it (e.g., 
approach trajectory must be parallel to the shelf). The 
obstructions could be detected by the CRS during operation, 
or the movements to place the assembled artifacts safely in 
each area can be programmed during the instruction phase.  

D. Procedures 
A set of commands for the human and robot to follow to 

perform the task in a measurable way is a procedure. We 
envision an underlying set of procedures that are agnostic to 
task specifics (e.g., grasping vs. welding), but capture the 
relevant qualities of the collaborative task scenarios. For 
instance, a set of testbed procedures may focus on handoff 

Figure 1. The example HRC scenario in five stages, rendered in a 
notional test method apparatus. (1) The human grabs the artifacts from 
the start location in the apparatus. (2) The human places the green peg 
into the blue cylinder or orange block to create one of two possible 
unique assembled artifacts and places them in the work area. (3) The 
CRS detects the assembled artifact in the work area and grasps it. (4) 
The CRS lifts and transfers the combined artifact towards the possible 
end locations. (5) The CRS places the artifact on the shelf. 

 



  

tasks where the human and robot are passing artifacts to one 
another, while another may involve the shared handling of a 
large artifact and placing it somewhere in the apparatus. 
Procedures will be defined for the instruction phase and the 
execution phase of task performance.  

The procedure for performing a test in the example HRC 
scenario will first involve instructing the robot how to 
perform the task. This includes conveying the parameters for 
grasping the assembled artifacts as previously described, how 
to do so safely (i.e., when the human’s hands are not in the 
way), and transferring to the appropriate end location. After 
instruction, the procedure will involve executing the task for 
a number of repetitions and recording performance. The 
manner in which the human agent performs can be scripted to 
exercise certain error states (e.g., the human intentionally 
places unassembled objects into the CRS work area) or left to 
perform “naturally,” noting any errors incurred along the 
way. The procedure will vary depending on the test method.  

E. Metrics 
Measures related to task performance (e.g., speed, 

accuracy, time to recover from faults; individually for both 
agents and the task itself), task instruction (e.g., “amount” of 
instruction; number of steps, time), and correlations between 
the two will be implemented. The metric for “amount” of 
instruction could compare the number of manually instructed 
steps (e.g., using a teach pendant), those occurring more 
“naturally” between the human and the CRS (e.g., techniques 
like learning by demonstration), and those performed more 
autonomously by the CRS (e.g., scanning the area and to plan 
an optimal grasp, as is done in [8]). Metrics can also be 
developed to assess the “efficiency” of the collaboration. 
This could be expressed by comparing optimal task 
performance (i.e., both agents perform perfectly) with 
suboptimal task performance (i.e., one or both of the agents 
make mistakes that must be rectified). Additionally, measures 
such as ground truth data of the human and robot can be 
gathered through motion capture and/or wearable IMUs. The 
artifacts and apparatus designs will also contain inherent 
metrics related to their physical qualities, such as artifact size 
reflecting functional gripper width.  

The design of the example HRC scenario contains some 
inherent metrics as they pertain to CRS task performance, 

such as proper grasp, transfer, and organization of the 
assembled artifacts. Using the proposed “collaboration 
efficiency” metric described previously, one test could 
involve the human making no mistakes when assembling and 
placing the artifacts in the CRS work area. The throughput or 
rate of performance of this test could be compared to another 
test where the human intentionally performs suboptimally. 
The CRS could correct for these mistakes, such as by 
adapting its behavior and/or alerting the human, to maintain a 
desired throughput measure. 

V. TEST METHOD CONCEPTS 
While development is still underway, concepts for test 

methods can be discussed using the considerations described 
previously to illustrate the testbed. A few test method 
concepts are described in this section, as well as the manner 
in which each test method can be applied to the example 
HRC scenario. The capabilities being evaluated in each test 
method are not mutually exclusive from one another. Rather, 
they use the example HRC scenario as the setting, where an 
experiment could take place to perform the assemble, pick, 
and place task. Depending on the desired evaluation, test 
methods like those described below could be used to elicit 
different types of performance.  

These test method concepts and more will continue to be 
developed as the characterization taxonomy is generated.  

A. Obstruction 
The layout of the apparatus and artifacts can require 

certain arm positions and end effector approach angles that 
could obstruct the robot’s vision system, impacting task 
performance. Depending on how many DOF the robot arm 
has, an optimal position and approach could be used that is 
more beneficial to task performance, either in terms of 
productivity, user convenience, or both.  

In the example HRC scenario, the human may assemble 
the artifacts at the start location, mid-air, or in the CRS work 
area. The work area could become obstructed if too many 
unassembled and assembled artifacts are present (see Figure 
2). While the CRS is trying to detect the assembled artifacts 
in the work area, performance could be affected by increasing 
detection time or it could halt task progression if grasping an 
assembled artifact may not be achievable until the 

Figure 2. Three test method concepts using the example HRC scenario depicted in Figure 1, showing the CRS workspace (stage 3).  
Left: Too many artifacts obstruct the work area. Center: The artifacts in the work area are not assembled. Right: The assembled artifacts are not oriented 
correctly or are not placed correctly inside of the work area boundary. 

 



  

obstructions are moved. This type of condition could be 
scripted to occur in the procedure or it could happen naturally 
if the human performs faster than the CRS. 

B. Awareness 
For any given task, an artifact must be present with which 

the CRS end effector can interact. If the artifact is not 
present, the CRS could be aware and alert the human. Or, if 
an artifact is presented that the CRS is not able to handle 
(e.g., too big, too small, not what it was programmed for), the 
same reaction could occur. 

The human is responsible for assembling the artifacts in 
the example HRC scenario. If he/she makes a mistake in 
assembling, such as placing unassembled artifacts in the 
work area (see Figure 2), the CRS could be aware of this 
error. The reaction of the CRS could be to pause task 
progression and/or alert the human to fix their mistake. If the 
CRS is not aware that an error has occurred, it could continue 
executing the task. The performance of the CRS could 
depend on how it was instructed to perform the task (e.g., the 
human did not program it to look for the green peg in the 
artifact) or a limitation of the CRS cognition. 

C. Adaptation 
If the human makes an error during task execution (e.g., 

hands an artifact to the robot in the wrong orientation), the 
CRS could adapt its behavior to correct the situation (e.g., 
grasp the artifact differently such that its orientation is 
corrected) and/or alert the human to the error so the human 
can adapt his or her behavior.  

A parameter of the example HRC scenario is that the 
assembled artifacts need to be kept in an upright orientation. 
If the human does not adhere to this parameter (see Figure 2), 
such as by placing the assembled artifacts on their side, the 
CRS could detect this anomaly and adjust its grasp, or lift and 
transfer trajectories to reorient the assembled artifact. If the 
human does not place the assembled artifact in the right spot 
for the CRS to grasp (e.g., outside of the work area), the CRS 
could increase its detection area to look for it. Depending on 
other parameters of task performance, the CRS could 
continue to grasp the assembled artifact (if it were in reach) 
or alert the operator to move it into the work area.      

VI. CONCLUSION 
This paper presents a collaborative HRI testbed that is in 

its conceptual stage. More research and literature review is 
required to properly characterize CRS such that the taxonomy 
can be generated. The considerations presented here will be 
used during the design cycle to develop concepts for test 
methods, eventually to be prototyped and piloted with a 
series of CRS. While existing metrics commonly used for 
HRI and task performance can be applied in this testbed, 
more investigation is needed to develop new metrics that are 
specific to HRC. For example, those that consider task 
instruction, specifically how to characterize task instruction 
to measure its impact on the resulting task execution. Such a 
metric could aid in guiding developments for optimal 
HRI/HRC techniques. 
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