Review of a Multisensor, Low Cost, and Non-invasive Approach to Detect Movements in SIT and Sleep

Yi Jui Lee1, Nadia Beyzaei2, Mai Berger2, Emmanuel Tse2, Bernhard Kohn4, Heinrich Garm4, Gerhard Klösch5, Osman Ipsiroglu2,3, H.F. Machiel Van der Loos1

1Robotics for Rehabilitation Exercise and Assessment in Collaborative Healthcare (RREACH) Lab, University of British Columbia 2Sleep/Wake Behavior Clinic & Research Lab, BC Children’s Hospital, Dept. of Pediatrics, University of British Columbia 3Child & Family Research Institute (CFRI) 4AIT Austrian Institute of Technology GmbH 5Department of Neurology, Medical University of Vienna

Introduction

- Movement measurements in Suggested Immobilization Test (SIT) and sleep recordings are typically measured by polysomnography (PSG) with electromyography (EMG).
- However, PSG studies sometimes compromise natural sleep and is often restricted to short samples. Moreover, certain cohorts, such as children with NDDs have difficulties tolerating intrusive monitoring. PSG are also expensive and not easily accessible in certain regions.
- This poster introduces an approach to detect movements in SIT and sleep, and discusses about guidelines within the current measurement framework.

Methods

- 19 participants were administered the study (SIT and sleep). The subjects lay on an angled bed for 30 minutes and slept for up to 30 minutes.
- A combination of the Kinect videography system, a portable EMG device, and a mattress topper sheet fitted with flexible sensors (force and temperature sensors) were used to collect data from the subjects.
- Electrodes were placed on the tibialis anterior muscle on each leg.

Key Findings

- Pitfalls in the EMG setup and study protocol were identified and corrected.
- Different EMG montage (two electrodes configuration) were used for the tibialis anterior muscle to reduce noise from ECG artifacts.
- Bit encoded timesignal was sent to the EMG recorder to allow for the synchronization of data between EMG, videography and mattress.
- The millisecond-level time stamping system will support identification of movement characteristics (development and peak) for Periodic Limb Movements (PLMs).
- Machine learning in the videography system enabled the automated identification and annotation of movement events in recordings.
- Control of external factors - ambient light, clothing elements, and hardware setup is important to ensure video data integrity.
- New sensors will be introduced to the mattress sensor system to improve sensing performance and incorporate detection of physiological signals (HR and RR).

Acknowledgement

This work is funded by the Kids Brain Health Network – Networks of Centres of Excellence (NCE), under the TotTech initiative (Tangible, organizing and therapeutic technologies to engage children).

References

1. PSG Image: Wikimedia commons
2. Kinect Image: Wikimedia commons
3. Embletta Image: Natus Medical Incorporated

Introduction

- Movement measurements in Suggested Immobilization Test (SIT) and sleep recordings are typically measured by polysomnography (PSG) with electromyography (EMG).
- However, PSG studies sometimes compromise natural sleep and is often restricted to short samples. Moreover, certain cohorts, such as children with NDDs have difficulties tolerating intrusive monitoring. PSG are also expensive and not easily accessible in certain regions.
- This poster introduces an approach to detect movements in SIT and sleep, and discusses about guidelines within the current measurement framework.

Methods

- 19 participants were administered the study (SIT and sleep). The subjects lay on an angled bed for 30 minutes and slept for up to 30 minutes.
- A combination of the Kinect videography system, a portable EMG device, and a mattress topper sheet fitted with flexible sensors (force and temperature sensors) were used to collect data from the subjects.
- Electrodes were placed on the tibialis anterior muscle on each leg.

Key Findings

- Pitfalls in the EMG setup and study protocol were identified and corrected.
- Different EMG montage (two electrodes configuration) were used for the tibialis anterior muscle to reduce noise from ECG artifacts.
- Bit encoded timesignal was sent to the EMG recorder to allow for the synchronization of data between EMG, videography and mattress.
- The millisecond-level time stamping system will support identification of movement characteristics (development and peak) for Periodic Limb Movements (PLMs).
- Machine learning in the videography system enabled the automated identification and annotation of movement events in recordings.
- Control of external factors - ambient light, clothing elements, and hardware setup is important to ensure video data integrity.
- New sensors will be introduced to the mattress sensor system to improve sensing performance and incorporate detection of physiological signals (HR and RR).

Acknowledgement

This work is funded by the Kids Brain Health Network – Networks of Centres of Excellence (NCE), under the TotTech initiative (Tangible, organizing and therapeutic technologies to engage children).

References

1. PSG Image: Wikimedia commons
2. Kinect Image: Wikimedia commons
3. Embletta Image: Natus Medical Incorporated

Introduction

- Movement measurements in Suggested Immobilization Test (SIT) and sleep recordings are typically measured by polysomnography (PSG) with electromyography (EMG).
- However, PSG studies sometimes compromise natural sleep and is often restricted to short samples. Moreover, certain cohorts, such as children with NDDs have difficulties tolerating intrusive monitoring. PSG are also expensive and not easily accessible in certain regions.
- This poster introduces an approach to detect movements in SIT and sleep, and discusses about guidelines within the current measurement framework.

Methods

- 19 participants were administered the study (SIT and sleep). The subjects lay on an angled bed for 30 minutes and slept for up to 30 minutes.
- A combination of the Kinect videography system, a portable EMG device, and a mattress topper sheet fitted with flexible sensors (force and temperature sensors) were used to collect data from the subjects.
- Electrodes were placed on the tibialis anterior muscle on each leg.

Key Findings

- Pitfalls in the EMG setup and study protocol were identified and corrected.
- Different EMG montage (two electrodes configuration) were used for the tibialis anterior muscle to reduce noise from ECG artifacts.
- Bit encoded timesignal was sent to the EMG recorder to allow for the synchronization of data between EMG, videography and mattress.
- The millisecond-level time stamping system will support identification of movement characteristics (development and peak) for Periodic Limb Movements (PLMs).
- Machine learning in the videography system enabled the automated identification and annotation of movement events in recordings.
- Control of external factors - ambient light, clothing elements, and hardware setup is important to ensure video data integrity.
- New sensors will be introduced to the mattress sensor system to improve sensing performance and incorporate detection of physiological signals (HR and RR).

Acknowledgement

This work is funded by the Kids Brain Health Network – Networks of Centres of Excellence (NCE), under the TotTech initiative (Tangible, organizing and therapeutic technologies to engage children).

References

1. PSG Image: Wikimedia commons
2. Kinect Image: Wikimedia commons
3. Embletta Image: Natus Medical Incorporated